Scalars, Vectors, Matrices and Tensors
- Scalars
- Just a single number.
- ex) $s \in \mathbb{R}$, $n \in \mathbb{N}$
- Vectors
- An array of numbers.
- ex) $\bm{x} \in \mathbb{R}^n$
- Matrices
- A 2-D array of numbers.
- ex) $\bm{A} \in \mathbb{R}^{m\times n}$
- Tensors
- An array with more than two axes.
-
Transpose \(\left( \bm{A}^\top \right)_{i,j} = \bm{A}_{j,i} \\ \left( \bm{A} \bm{B} \right) ^\top = \bm{B}^\top \bm{A}^\top\)
- A transpose of a column vector is a row vector, and vice versa.
- A transpose of a scalar is itself.
Leave a comment